Conserved plant genes with similarity to mammalian de novo DNA methyltransferases.

نویسندگان

  • X Cao
  • N M Springer
  • M G Muszynski
  • R L Phillips
  • S Kaeppler
  • S E Jacobsen
چکیده

DNA methylation plays a critical role in controlling states of gene activity in most eukaryotic organisms, and it is essential for proper growth and development. Patterns of methylation are established by de novo methyltransferases and maintained by maintenance methyltransferase activities. The Dnmt3 family of de novo DNA methyltransferases has recently been characterized in animals. Here we describe DNA methyltransferase genes from both Arabidopsis and maize that show a high level of sequence similarity to Dnmt3, suggesting that they encode plant de novo methyltransferases. Relative to all known eukaryotic methyltransferases, these plant proteins contain a novel arrangement of the motifs required for DNA methyltransferase catalytic activity. The N termini of these methyltransferases contain a series of ubiquitin-associated (UBA) domains. UBA domains are found in several ubiquitin pathway proteins and in DNA repair enzymes such as Rad23, and they may be involved in ubiquitin binding. The presence of UBA domains provides a possible link between DNA methylation and ubiquitin/proteasome pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the Arabidopsis DRM Methyltransferases in De Novo DNA Methylation and Gene Silencing

Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, ...

متن کامل

Chromatin targeting of de novo DNA methyltransferases by the PWWP domain.

DNA methylation patterns of mammalian genomes are generated in gametogenesis and early embryonic development. Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the process. Both enzymes contain a long N-terminal regulatory region linked to a conserved C-terminal domain responsible for the catalytic activity. Although a PWWP domain in the N-terminal region has been shown...

متن کامل

DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development

The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and...

متن کامل

De novo CpG island methylation in human cancer cells.

A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which ge...

متن کامل

Epigenetic Mechanisms of Gene Regulation: Relationships between DNA Methylation, Histone Modification, and Chromatin Structure

DNA methylation is a post-replicative, or epigenetic, modification of the genome that is critical for proper mammalian embryonic development, gene silencing, X chromosome inactivation, and imprinting. Genome-wide DNA methylation patterns are nonrandomly distributed and undergo significant remodeling events during embryogenesis. DNA methylation patterns are also frequendy 'remodeled' in tumor ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 9  شماره 

صفحات  -

تاریخ انتشار 2000